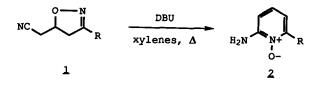
BASE CATALYZED REARRANGEMENT OF 5-CYANOMETHYL-2-ISOXAZOLINES; NOVEL PATHWAY FOR THE FORMATION OF 2-AMINOPYRIDINE N-OXIDES


A. W. Chucholowski^{*1} and S. Uhlendorf

Parke-Davis Pharmaceutical Research Division Warner-Lambert Company 2800 Plymouth Road Ann Arbor, Michigan 48105 USA

SUMMARY: 2-Aminopyridine N-oxides are readily prepared by the base catalyzed rearrangement of 5-cyanomethyl-2-isoxazolines.

2-Isoxazolines are readily available compounds which have proven to be synthetically useful intermediates due to their ability to undergo reductive ring opening¹ as well as oxidation to isoxazoles.² Upon treatment with base, however, 2-isoxazolines fail to react predictably but instead may undergo fragmentation,³ ring opening,⁴ and/or rearrangement.⁵ Here we report a novel base catalyzed transformation of 3-substituted-5-cyanomethyl-2-isoxazolines to 2-aminopyridine N-oxides.

5-Cyanomethyl-2-isoxazolines $\underline{1}$ are readily accessible in high yield via a 1,3-dipolar cycloaddition reaction of nitrile oxides with allylcyanides.⁶ On treatment with catalytic amounts of base, such as 1,5-diazabicyclo(5.4.0)undec-5-ene (DBU) in boiling xylenes, $\underline{1}$ reacts to form 6-substituted-2-aminopyridine N-oxides $\underline{2}$, which in some cases can be isolated from the cold reaction mixture as a white precipitate (2c, 2e).

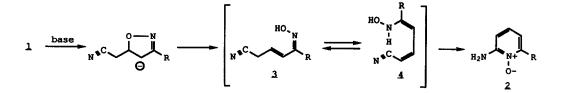
The reaction proceeds smoothly when R is alkyl, alkenyl, or phenyl and high yields of the corresponding 2-aminopyridine N-oxide are obtained.

However, when R contains a carbonyl molety present at the 3-position (Entry 2g), complete decomposition of $\underline{1}$ takes place.

Entry	R	Reaction Conditions	Reaction Time (h)	Yield ^C %	mp (°C)
2a 2b 2c 2d	Me Et Ph -CH=CH-Ph E	DBU, xylenes DBN, o-xylene DBU, xylenes DBU, xylenes	16 18 48 48	58 79 90 96	153-154 122-123 236 154-155
2e		NaOMe, ^d MeOH	36	82	159-160
2f		DBU, xylenes	24	75	123-124
2g	-COPh	DBU, xylenes	16	dec.	

Yields from the Base Catalyzed Reaction of 5-Cyanomethyl-2-isoxazoline $\underline{1}^{a,b}$ to $\underline{2}$

^a The reactions were typically carried out in refluxing solvent using 10 mmol $_{\rm h}$ of 1 and 0.2 equivalents of base.


^b All reported pyridine N-oxides displayed spectral characteristics (IR, MS, ¹H-NMR) which were consistent with their assigned structure. Satisfactory

_ analysis for all new compounds.

d Yields shown do not represent optimized values.

" 1.1 equivalent of NaOMe was used.

We postulate that the transformation $\underline{1}$ to $\underline{2}$ is initiated by an intramolecular elimination reaction⁷ (Scheme 1). It should proceed through the reactive Z-vinyl-ene-hydroxylamine $\underline{4}$, which cyclizes spontaneously to give the final product $\underline{2}$. More than likely the E-isomer, if present, can isomerize to the Z-form $\underline{4}$ under the given reaction conditions. The assumption of $\underline{4}$ as the reactive intermediate is in agreement with results by Gewald⁸ who synthesized 2-amino pyridine N-oxides by reacting α -ylidene malonitrile with various nitrile oxides. In no case, however, were we able to isolate any putative open chain intermediates such as 4 or the α,β -enoxime 3.⁷

The structure <u>2</u> was established by ¹H-NMR, mass spectrum analysis and reduction with zinc (example <u>2a</u>) in acetic acid⁹ to give the substituted pyridine which was identical to an authentic sample.¹⁰

This rearrangement of 5-cyanomethyl-2-isoxazolines opens a novel entry to 6-substituted-2-amino pyridines and their N-oxides.

References

- Correspondence to the author should be addressed: Pharma Research,
 F. Hoffmann-La Roche & Co. Ltd., CH-4002 Basle (Switzerland).
- A. P. Kozikowski and M. Adamcyk, <u>Tetrahedron Lett.</u> (1982) 23, 3123;
 D. P. Curran and C. J. Fenk, Ibid. (1986) 27, 4865; D. P. Curran,
 P. B. Jacobs, R. L. Elliot, and B. H. Kim, <u>J. Am. Chem. Soc.</u> (1987) 109, 5280; D. P. Curran Ibid. (1982) 104, 4024; S. S. Gabrial, I. Thompsen, and K. B. G. Torssell, <u>Acta. Chem. Scand.</u> (1987) 41, 426.
- G. Bianchi, A. Galli, and R. Gandolfi; <u>Gazz. Chim. Ital.</u> (1968) 98, 42;
 G. Bianchi and M. DeAmici; <u>J. Chem. Res.</u> (1979) 311.
- G. Biachi, R. Gandolfi, and P. Gr^cnanger, <u>J. Heterocycl. Chem.</u> (1968) 5, 49.
- 5. V. Jäger and H. Grund, Liebigs Ann. Chem. (1980) 80.

- H. Knupfer and C. W. Schellhammer; <u>Ger. Offen</u> 2, 815, 956 (1980) (<u>Chem. Abstr.</u>, 1980, 92, 94, 406).
- R. Huisgen, <u>Angew. Chem.</u> (1963) 75, 613; T. Mukaiyama and Hoshino, J. Am. Chem. Soc. (1960) 82, 5339.
- 8. V. Jäger and H. Grund, Angew. Chem. Int. Ed. Engl. (1976) 15, 242.
- 9. K. Gewald and N. Hain, Z. Chem. (1986) 26, 434.
- 10. F. A. Daniher and B. E. Hackley, <u>J. Org. Chem.</u> (1966) 4267.
- 11. 2-Amino-6-picoline purchased from Aldrich Chemical Company Inc.

(Received in USA 16 November 1989)